R-Drop这个想法真的是妙极了!!!任何有监督学习任务最后都可以用R-Drop试一下效果,说不上有惊喜!!!
import torch.nn.functional as F # define your task model, which outputs the classifier logits model = TaskModel() def compute_kl_loss(p, q, pad_mask=None): p_loss = F.kl_div(F.log_softmax(p, dim=-1), F.softmax(q, dim=-1), reduction='none') q_loss = F.kl_div(F.log_softmax(q, dim=-1), F.softmax(p, dim=-1), reduction='none') # pad_mask is for seq-level tasks if pad_mask is not None: p_loss.masked_fill_(pad_mask, 0.) q_loss.masked_fill_(pad_mask, 0.) # You can choose whether to use function "sum" and "mean" depending on your task p_loss = p_loss.sum() q_loss = q_loss.sum() loss = (p_loss + q_loss) / 2 return loss # keep dropout and forward twice logits = model(x) logits2 = model(x) # cross entropy loss for classifier ce_loss = 0.5 * (cross_entropy_loss(logits, label) + cross_entropy_loss(logits2, label)) kl_loss = compute_kl_loss(logits, logits2) # carefully choose hyper-parameters loss = ce_loss + α * kl_loss
本文作者:比格心
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!